SWITCHES for AUTOMATION and SAFETY

The original COELBO limit switches, certainly among the first ever designed to be used in environments with risk of explosion, allow to extend also to classified areas all forms of machine automation (and/or process) in total safety complying with the ATEX Directive.

Our limit switches are normally used as detectors of the relative position of moving parts, between them coordinated (eg: by automation systems such as smart wired logic, dedicated microprocessors and PLC) or as elements associated with automatic devices for protection and safety for operators and machinery (e.g. alarm and shutdown intrusion, penetration,
collision, presence systems, etc.).

To cover all possible needs have developed two different types of limit switches characterized by two distinct technologies: one purely mechanical and the other more properly magnetic; in the first case the movement of the limit switch, or of another element in relative motion, moves a piston or lever to produce the subsequent actuation of an electrical circuit (associated with its own automation or alarm/safety system on which the limit switch is installed) contained within the same explosionproof enclosure.
The other technology, the magnetic one, takes advan-
tage of the effects produced by the interference of a stranger metal item in a normally stable magnetic circuit. It is evident that the "proximity" - with no contact or mechanical action - of such foreign items to alter the magnetic field of the sensor and thus providing the actuation of an electric circuit in turn associated to the automation or alarm/security system.

These products are usually available from stock. Although designed for a virtually unlimited duration, to guarantee the operational safety and certified compatibility, purchasing any spare parts directly from COELBO is reccommended.

POSITION SWITCHES

NOTES:

Contact Units for currents and/or voltages beyond the standard.
Cable entry with metric thread M20x 1.5 (M).

- Rollers in Metal.

- Different diameters rollers.
- Actuators with some metal parts in Stainless Steel.

Degree of pollution: 3 conforming to IEC/EN 60947-5-1 Standards.
Frequency of operations: 20/min (*) max
Number of cycles: $8 \div 10$ millions
Storage Temperature: $-40^{\circ} \mathrm{C} \div+85^{\circ} \mathrm{C}$

Contact Unit

Nominal current (active): $: 10 \mathrm{~A}$ Insulating Voltage:
Short Circuit Protection: 10 A Fuse
Minimum conductor section $: 1.5 \mathrm{~mm}^{2}$
Max Current Density:
: $5 \mathrm{~A} / \mathrm{mm}^{2}$

Electrical Diagram

Type	Contact	Diagram	Operating	Type	Contact	Diagram	Operating
C2			Snop getion	C6I	$1 \mathrm{NC}+1 \mathrm{Na}$	$\begin{aligned} & 21 \\ & 4-1 \\ & z=1+1 \end{aligned}$	${ }_{\text {Non cuerlaping }}^{\text {siow }}$
C3I	${ }_{1} \mathrm{NC}+1 \mathrm{NG}$	$\begin{aligned} & 1121 \\ & 4122 \\ & 4 \end{aligned}$	Simulangus	C7I	${ }^{1 \mathrm{NC}}+1 \mathrm{Na}$	$\begin{aligned} & 21 \\ & 4-11^{13} \\ & 2 y_{1} \end{aligned}$	Oiveraping
C41	$1 \mathrm{na}+1 \mathrm{Na}$		Smutaneus	C91	2 NC	$\begin{aligned} & 1121 \\ & 4-7 \\ & 12-72 \end{aligned}$	Simutaneus
C5I	$1 \mathrm{NC}+1 \mathrm{Na}$		Snop oction				

Contacts identification (by numbers) in compliance with IEC/EN 60947-1 Standards
All types (except C2) allow different voltages at the contacts terminals.
For type C2 the contacts 13-14 and 21-22 are electrically separated from contacts 31-32 and 43-44.
Positive opening of contacts $\Theta{ }^{* *)}$ for some models available in compliance with IEC/EN 60947-5-1 e CEI 17-45-F. 1914 Standards.

NOTES

To read the installation and maintenance instructions is reccommended.

The temperature class $\mathrm{T} 6 / \mathrm{T} 85^{\circ} \mathrm{C}$ considers an Ambient Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas, class T5/T $100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.
(*) For A.T. up to $+40^{\circ} \mathrm{C}$ the max surface temperature is $65^{\circ} \mathrm{C}$ reducing the number of operations to 600/h.
(**) As safety switches only those with symbol shall be used.

The safety circuit must always be connected to NC contacts (11-12 or 21-22). Exceed by $1.5 \mathrm{~mm}\left(25^{\circ}\right)$ the gap between the contacts. Operate the switch with the indicated opening force.

Swivel heads

All switches allow to rotate the head by $90^{\circ} \times 90^{\circ}$ by unscrewing the four fixing screws (fig. 1).

Adjustable levers

Position switches with roller lever have the lever adjustable by $10^{\circ} \times 10^{\circ}$ (fig. 2). The positive movement transmission is always ensured by the particular geometric coupling between the lever and the shaft.

Fig. 1

Fig. 2

Stroke diagrams

> Opened Contact allyma
> Closed Contact
> Positive Opening

Example: LS 5101M

Series LS: AVAILABLE MODELS

* IN ALTERNATIVA:

Alternative: M20x1.5 ISO 262

* IN ALTERNATIVA:

Alternative: M20x1.5 ISO 262

Information on available contacts: see pages D03 and D04.

Installation instructions

- The safety circuit shall be connected to the contact NC 21-22 when the key is inserted.
- The safety switches shall be assemblied to the body of the machine, while the key-lock is fixed to the protection.
- The head may be positioned on any of the four sides of the switch just by removing the four fixing screws: This allows up to 8 different actuation directions.
- The head of model LS ...93, adjustable over 360°, may be positioned in any actuation direction. When the key is not inserted make sure that any dust and dirt do not obstruct its seat.

- Verify periodically the correct operation of the switch.

- Fix the switch interposing a washer under fixing screws head.

Application on fences

When the switch is used to protect parts of machines physically accessible to people, to prevent the door or gate may accidentally close when the operator is inside, a padlock may be used at the appropriate hole on the key.
The arc of the padlock shall be of 6 mm diameter minimum.
Key-lock safety switch with positive opening
$\theta: L S$..92N

Contact Unit	Actuator
..	92

Key-lock safety switch with positive opening

Contact Unit
..

with swivel head: LS ..93N

NOTES

To read the installation and maintenance instructions reccommended.

The temperature class $\mathrm{T} 6 / \mathrm{T} 85^{\circ} \mathrm{C}$ considers an Ambient Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas, class $T 5 / \mathrm{T} 100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.
(*) For A.T. up to $+40^{\circ} \mathrm{C}$ the max surface temperature is $65^{\circ} \mathrm{C}$ reducing the number of operations to $600 / \mathrm{h}$.
(**) As safety switches only those with symbol shall be used.

The safety circuit must always be connected to NC contacts (11-12 or 21-22). Exceed by $1.5 \mathrm{~mm}\left(25^{\circ}\right)$ the gap between the contacts. Operate the switch with the indicated opening force.

*IN ALTERNATIVA:
Alternative: M20×1.5 ISO 262

ESEMPIO DI COLLEGAMENTO

ESEMPI DI APPLICAZIONE Installation example

[^0]Information on available contacts: see pages D03 and D04.

Installation instructions

- The safety circuit must be connected to the NC contact (11-12 or 21-22).
- Fix the switch interposing a washer under fixing screws head.
- To connect the scrolling slotted hole lever to the hinged door (or equivalent) use a suitable swivel (i.e. a rivet) that will not derail from the scrolling slottedhole lever.
- The switch must be mounted having the lever rotation axis as close as possible to the hinge rotation axis.
- Make sure that at the maximum opening of the door (or equivalent) the swivel is not acting as a mechanical stop.
- Verify periodically the correct operation of the switch.

NOTES
To read the installation and maintenance instructions reccommended.

The temperature class $\mathrm{T} 6 / \mathrm{T} 85^{\circ} \mathrm{C}$ considers an Ambient Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas, class $\mathrm{T} 5 / \mathrm{T} 100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.
(*) For A.T. up to $+40^{\circ} \mathrm{C}$ the max surface temperature is $65^{\circ} \mathrm{C}$ reducing the number of operations to $600 / \mathrm{h}$.
(**) As safeły switches only those with Θ symbol shall be used.

The safety circuit must always be connected to NC contacts (11-12 or 21-22). Exceed by $1.5 \mathrm{~mm}\left(25^{\circ}\right)$ the gap between the contacts. Operate the switch with the indicated opening force.

* I PRODOTTI CONTRASEGNATI SONO NORMALMENTE DISPONIBILI A MAGAZZINO

A LEVA ASOLATA DX	A LEVA ASOLATA	A LEVA ASOLATA SX
With slotted hole lever DX	With slotted hole lever	With slotted hole lever SX

With slotted hole lever DX

A LEVA ASOLATA
With slotted hole lever

SX
With slotted hole lever SX

UNITA' DI CONTATTO Contact blocks	N-CATALOGO.		DIAGRAMMI CORSE Travel diagrams			N-CATALOGOCotalogue n		DIAGRAMMI CORSE Travel diagrams				N^{-}CATALOGO Cotalogue n°		DIAGRAMMI CORSE Travel diagrams		
	LS 6A77N \ominus	$\begin{aligned} & 21-22 \\ & 13-14 \end{aligned}$	$\begin{aligned} & 4 . \\ & \frac{4}{20} \\ & \hline 0 \end{aligned}$	8	ITITV 180°	$\begin{array}{\|c} \hline \text { LS 6B77N } \\ \theta \end{array}$	$\begin{aligned} & 21-220^{\circ} \\ & 13-14 \end{aligned}$	8		8°	90° ?	LS 6C77N	$\begin{aligned} & 21-22 \\ & 13-14 \end{aligned}$	$\frac{\pi}{0}$	8°	Tाए 180°
	LS 9A77N	$\begin{aligned} & 11-12 \\ & 21-22 \end{aligned}$	0 픞	10°	$\begin{array}{\|c\|} \hline 180^{\circ} \\ \hline \end{array}$	LS 9B77N	$\begin{aligned} & 11-1290^{\circ} \\ & 21-22 \end{aligned}$	$\frac{\text { TH }}{10^{\circ}}$			90°	LS 9C77N θ	$\begin{aligned} & 11-12 \\ & 21-22 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \underline{M} \end{aligned}$	10	$\begin{array}{\|c} \hline 180^{\circ} \\ \hline \hline \end{array}$

ESEMPIO DI APPLICAZIONE -Installation examples

- Ideal to control Gates, Protections, Carters and any moving mechanical parts.
- Positively opens the contacts when exceeding a rotation of a few degrees, immediately releasing the
stop signal.
- Applicable to any type of protection (hinged, removable or sliding).
- For any other information pls. see pages D03 and D04.

Information on available contacts: see pages D03 and D04

Installation instructions

-The safety circuit shall be connected to the NC contact (11-12 or 21-22).

- Fix the switch interposing a washer under fixing screws head.
- Insert the pivot $\varnothing 8 \mathrm{~mm}$ (outgoing from the hinge) in the shaft of the switch temporarily fixing it with the M4 screw (included).
- Verify the opening set position of the NC safety contact and adjust it as necessary. When the set position is adjusted the pin of the hinge has to be drilled in coincidence with the the most convenient hole between the two present on the shaft and then secured with the relevant plug (supplied).
- Periodically verify the correct operations of the switch.

Safety switch for hingeswith positive opening LS ..95N

\qquad

NOTES

To read the installation and maintenance instructions is reccommended.

The temperature class $\mathrm{T} 6 / \mathrm{T} 85^{\circ} \mathrm{C}$ considers an Ambient Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas, class $\mathrm{T} 5 / \mathrm{T} 100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.
(*) For A.T. up to $+40^{\circ} \mathrm{C}$ the max surface temperature is $65^{\circ} \mathrm{C}$ reducing the number of operations to $600 / \mathrm{h}$.
(**) As safety switches only those with \ominus symbol shall be used.

The safety circuit must always be connected to NC contacts (11-12 or 21-22). Exceed by $1.5 \mathrm{~mm}\left(25^{\circ}\right)$ the gap between the contacts. Operate the switch with the indicated opening force.

A PERNO PER CERNIERE
With hinge push button

ESEMPIO DI COLLEGAMENTO Wiring example

Positive aposit

 Positive openingESEMPIO DI APPLICAZIONE - Installation examples

- Compact and lightweight (450 g) design with ideal features for use in dangerous process and hazardous environments.
- Wide range of actuators in metal or in selfestinguishing glass-fiber-reinforced polymer (GFRP).
- Wide variety of options for adaptation and assembly.
- Internal operating rod in Stainless Steel AISI 303 on a brass bushing OT 58 UNI 5705/65.
- External screws in Stainless Steel except for actuators that may have components in tropicalized steel.
- Stainless Steel version (see page 119).
- Quick snap-action contact units 2NC (C11) with positive opening Θ

Cable entry with metric thread M20x1.5 (M).

Rollers in Metal.

Different diameters rollers.
Actuators with some metal parts in Stainless Steel.

Degree of pollution: 3 conforming to IEC/EN 60947-5-1 Standards.
Frequency of operations: $20 / \mathrm{min}\left({ }^{*}\right)$ max
Number of cycles: $8 \div 10$ millions
Storage Temperature: $-40^{\circ} \mathrm{C} \div+70^{\circ} \mathrm{C}$

Contact Unit

Nominal current (active):	I: 10 A							
Insulating Voltage:	$\mathrm{U}_{\mathrm{i}}: 500 \mathrm{Vac} / 600 \mathrm{Vdc}\left[{ }^{\circ}\right]$			5 - A			3 - Q	
Impulse Withstand Voltage:	$\mathrm{U}_{\text {imp }}: 6 \mathrm{kV}$							
Short Circuit Current	: 1000 AV	$U_{\text {e }}(\mathrm{V})$	240	400	500	24	125	250
Short Circuit Protection:	Fuse 10 A 500 V	$\mathrm{I}_{\mathrm{e}}(\mathrm{A})$	6	4	1	3	0.55	0.3
Minimum conductor section	$: 1.5 \mathrm{~mm}^{2}$	e (A)	6	4	1	3	0.55	0.3
Max Current Density	: $5 \mathrm{~A} / \mathrm{mm}^{2}$							

Electrical Diagram							
Type	Contact	Diagram	Operating	Type	Contact	Diagram	Operating
C2	iNO+1NC	$14+22=$	Snop oction	ClO	2 No	$\begin{aligned} & 1323 \\ & y^{23}-4^{1} \\ & 1422 \end{aligned}$	Sow oction
C5	1 notinc	$\stackrel{13^{21}}{4}$	Snop action	ClI	2 NO	$\begin{aligned} & 1421 \\ & 5-7 \end{aligned}$	Snap action
C6	$1 \mathrm{No+100}$	- ${ }^{13}$	Slow action	C14	2NC	44_{4}^{24}	Slom action
C7	$1 \mathrm{No+100}$		come	CI5	2 No		Slow action
C9	2 No		Slow oction	C20	$1 \mathrm{No+2vC}$		Slow action

Contacts identification (by numbers) in compliance with IEC/EN 60947-1 Standards
All types (except C2) allow different voltages at the contacts terminals.
For type C2 the contacts 13-14 and 21-22 are electrically separated from contacts 31-32 and 43-44.
Positive opening of contacts $\Theta_{(* *)}^{*}$ for some models available in compliance with IEC/EN 60947-5-1 e CEI 17-45 - F. 1914 Standards.

NOTES

To read the installation and maintenance instructions reccommended.

The temperature class $\mathrm{T} 6 / \mathrm{T} 85^{\circ} \mathrm{C}$ considers an Ambient Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas, class $\mathrm{T} 5 / \mathrm{T} 100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.
[${ }^{\circ}$] The insulating voltage is equal to 400 VAC / 500 VDC for C2 and C11 contacts.
(*) For A.T. up to $+40^{\circ} \mathrm{C}$ the max surface temperature is $65^{\circ} \mathrm{C}$ reducing the number of operations to $600 / \mathrm{h}$.
(**) As safety switches only those with symbol shall be used.

The safety circuit must always be connected to NC contacts (11-12 or 21-22). Exceed by $1.5 \mathrm{~mm}\left(25^{\circ}\right)$ the gap between the contacts. Operate the switch with the indicated opening force.

Swivel heads

All switches allow to rotate the head by $90^{\circ} \times 90^{\circ}$ by unscrewing the four fixing screws (fig. 1).

${ }^{\circ} 0$ 。
Fig. 1

Fig. 2

Adjustable levers

Position switches with roller lever have the lever adjustable by $10^{\circ} \times 10^{\circ}$ (fig. 2). The positive movement transmission is always ensured by the particular geometric coupling between the lever and the shaft.

Unidirectional heads

To get the unidirectional operation on switches with revolving lever it is necessary to remove the four screws of the head and totate the internal piston.

Stroke Diagrams

Example: PS 511N

Series PS : AVAILABLE MODELS

* I Prooomi contrassegnati sono normalmente disponiblil a magazzino

A PERNO
With push button
VELOCITA' MASSIMA:
Max speed
FORZA MIN. DI AZIONAMENTO: Min. force actuation:

	N.CATALOGO Cotalogue π	DIAGRAMMI CORSE Travel diagrams
	PS	
	$\text { PS } 601 \mathrm{~N} \Theta_{13-14}^{21-22}=\frac{1.5}{0}$	
	PS $701 \mathrm{~N} \Theta_{13-14}^{21-22}=\frac{0}{3.1}{ }^{3.6}{ }^{6}$	
C9 $4-4$ 2NC $12-4$ 1022	PS 901N Θ_{21-22}^{11-12}	
	PS IOOIN ${ }_{23}^{13-14}=\stackrel{1.4}{\square}$	
$\begin{array}{lll} & \\ \mathrm{Cl} 4 & 1 & 11 \\ 2 \mathrm{NC} & 7-4 \\ 12 & 22 \\ \hline \end{array}$	$\text { PS } 140 \left\lvert\, N \Theta_{21-22}^{11-12}=\frac{0}{3.0}{ }^{4.4}\right.$	
$\begin{aligned} & \mathrm{C} 20 \\ & 1 \mathrm{NO}+2 \mathrm{NC} \\ & \hline 1-4-1^{\prime} \end{aligned}$		

*IN ALTERNATIVA: $M 20 \times 1.5$ ISO 262

A PERNO CON ROTELLA E PROTEZIONE IN GOMMA With rubber gasket push button roller
VELOCITA' MASSIMA:
VELOCITA' MASSIMA
CON CAMMA A 30°
Max speed with 30° cam.
FORZA MIN. DI AZIONAMENTO: 11 N
Min. force actuation:
FORZA MIN. PER APERTURA POSITIVA: Min. force positive opening operation:

LEGENDA

APERTURA POSITIVA
\Leftrightarrow APERTURA POSITIIA

- INIZIO APERTURA POSITIVA Positive opening beginning
- PREMENDO

Pushing

- RILASCIANDO

Releasing

UNITA' DI CONTATTO Contact blocks	CATALOGO DIAGRAMMI CORSE Travel diograms	
	PS 21	
	PS	
C7 13 $1 \mathrm{NO}+1 \mathrm{NC}$ $⺊_{1}$ 14 $-\quad 4$ 14 22		
	PS $1015 \mathrm{~N}{ }_{23-24}^{13-14}{ }^{0}{ }^{1.4}{ }^{1}$	
	$\text { PS } 14 \mid 5 \mathrm{~N} \oplus{ }_{21-22}^{11-12}=\underset{1.4}{0}{ }^{0}$	
C6 13 21 $1 \mathrm{NO}+1 \mathrm{NC}$ $⺊_{1}$ --7 14 22		
	PS $716 \mathrm{~N} \oplus{ }_{13-14}^{21-22}=\frac{0}{\text { 0. }}$	
C9 11 2NC $4-4$ 12		
ClO 1^{13} 2NO $\zeta^{2}-t^{\prime}$ 14 14		
	$\text { PS } 14 \left\lvert\, 6 N \oplus_{21-22}^{11-12=}=\frac{0}{0.0}\right.$	
C6 1321 1NO +1 NC 1 14 1 1422	PS $618 \mathrm{~N} \Theta_{13-14}^{21-22} \underset{\substack{0 \\ 3.4}}{\substack{1.5 \\ 0.0}}$	
	PS $718 \mathrm{~N} \oplus_{13-14}^{21-22}=\frac{0}{3.1}{ }^{0.6}$	
 C9 1121 2NC $4-4$ 12 22		
	PS 1518 N	
$\begin{array}{llll} \hline \mathrm{C} 20 & \begin{array}{ccc} 11 & 21 & 33 \\ \mathrm{C} & 4 & 4 \\ 1 & -y^{\prime} \\ 1 \mathrm{NO}+2 \mathrm{NC} & 12 & 22 \\ \hline \end{array} \\ \hline \end{array}$		

A PERNO CON ROTELLA
with push button roller
VELOCITA' MASSIMA
CON CAMMA A 30°
CON CAMMA A 30°
Max speed with $30^{\circ} \mathrm{cam}$:
FORZA MIN. DI AZIONAMENTO:
FORZA MIN. DI AZIONAMENTO:
Mir. force actuation:
FORZA MIN. PER APERTURA POSITIVA: Min. force positive opening operation:
LEGENDA
Legenda
\Leftrightarrow APERTURA POSITIVA
Positive opening

- INIZIO APERTURA POSITIVA
- Positive opening beginning
- PREMENDO

RILASCIANDO
RILASCIANDO
Releasing

A PERNO CON SFERA
With push button sphere
VELOCITA' MASSIMA:
Max speed
FORZA MIN. DI AZIONAMENTO Min. force actuation: FORZA MIN. PER APERTURA POSITIV Min. force positive opening operation: 25 N

LEGENDA

Legenda
\rightarrow APERTURA POSITIVA
Positive opening

- INIZIO APERTURA POSITIVA
- positive opening beginning
- PREMENDO

Pushing
1 RILASCIANDO
Releasing

CON MOLLA INOX
With spring stainless steel
VELOCITA' MASSIMA: $\quad 1.0 \mathrm{~m} / \mathrm{s}$
MaX speed
COPPIA MIN. DI AZIONAMENTO: 0.08 Nm Min. torque actuation: COPPIA MIN. PER APERTURA POSITINA: Min. torque positive opening operation:

LEGENDA
Legendo

- PREMENDO

Pushing
4 RILASCIANDO
Releasing

Contact blocks	${ }^{\text {N Cotalogue }}$ '	Travel diagrams
	PS 22IN	
	PS 52IN	
	PS I02IN	0 . 9 ${ }_{23-24}^{13-14}=\square$ THA
$\begin{array}{ll} \hline \mathrm{C} 20 & 11 \\ 1 \mathrm{NO}+2 \mathrm{NC} & 12-4 \\ 12 & 22 \\ \hline \end{array} \mathrm{l}^{34}$	PS 202IN	

CON MOLLA INOX
With spring stainless steel
VELOCITA' MASSIMA:
Max speed MASSIMA: $\quad 1.0 \mathrm{~m} / \mathrm{s}$
COPPIA MIN. DI AZIONAMENTO: 0.14 Nm Min. torque actuation: COPPIA MIN. PER APERTURA POSITNA: Min. torque positive opening operation:

LEGENDA
Legenda

- PREMENDO

Pushing
4 RILASCIANDO
Releasing

	$\underset{{ }^{*}}{\mathrm{PS}} 225 \mathrm{~N}$	
	$\text { PS } 525 \mathrm{~N}$	
	PS 1025N	${ }_{23}^{13-14}-\stackrel{\circ}{-2}$
	PS 2025N	

With CON ROTELLA
With roller lever
VELOCITA' MASSIMA:
CON CAMMA A 30°
MOX speed with 30° cam:
COPPIA MIN DI AZIONAMENTO: COPPIA MIN. DI AZIONAMENTO:
Min. torque actuation:
COPPIA MIN. PER APERTURA POSITVA: Min. torque positive opening operation:

LEGENDA

Legenda
\rightarrow APERTURA POSTITIVA
Positive opening

- INIZIO APERTURA POSITIVA

Positive opening beginning

- PREMENDO

Pushing
4 RILASCIANDO
Releasing

	$\begin{array}{\|lll} \hline \text { PS } \\ \text { P } \\ \text { 类 } \end{array}$
	$\underset{\text { PS }}{\text { PS }} 63 \mathrm{IN} \Theta_{13}^{21-22}{ }_{42}^{22}$
	$\text { PS } 73 \mathrm{IN} \oplus_{13-14}^{21-22} \frac{0}{23}$
1 11 C9 41 2NC $4-4$ 12 122	$\text { PS } 93 \mathrm{IN} \Theta_{21-22}^{11-12}=$
	PS $1031 \mathrm{~N} \underset{23-24-13}{13-1}=\frac{22}{22}$
$\begin{array}{ll} \hline \mathrm{Cl} 4 & 41 \\ 2 \mathrm{NC} & 7-4 \\ 12 & 22 \end{array}$	$\text { PS } 143 \left\lvert\, N \Theta_{21-22}^{11-12}=\frac{0}{0}\right.$
	$\begin{array}{\|cc\|} \hline \text { PS } \\ \text { 娄 } \end{array}$
	$\text { PS 732N }{ }_{13}^{21-22}=\frac{0}{15}=\frac{15}{15}$
4 11 C9 4 2NC $7-7$ 12 22	$\text { PS 932N } \underset{\substack{11-12 \\ 21-22}}{0}$
ClO $1^{13} 23$ 2NO $r^{23}-1_{1}^{1}$ 14 24	PS $1032 \mathrm{~N} \underset{23-24}{13-14}=\frac{14}{\square}$
 Cl 4 11 21 2 NC $4-4$ 12 22	$\text { PS I432N } \underset{21}{11-12}=\frac{0}{21-22}=\frac{35}{14}$
	PS I532N

A LEVA CON ASTA RIGIDA TONDA With rigid round rod lever
VELOCITA' MASSIMA: $\quad 1.5 \mathrm{~m} / \mathrm{s}$
Max speed
COPPIA MIN. DI AZIONAMENTO: 0.10 Nm
Min. torque actuation: COPPIA MIN. PER APERTURA POSITINA: COPPIA MIN. PER APERTURA POSITVA:
Min. torque positive opening operation:

LEGENDA

Legenda

- PREMENDO

Pushing
4 RILASCIANDO

A LEVA CON ASTA RIGIDA QUADRA
with rigid square rod lever
VFLOCITA' MASSIMA:
Max speed $\quad 1.5 \mathrm{~m} / \mathrm{s}$ COPPIA MIN. DI AZIONAMENTO: 0.10 Nm Min. torque actuation. COPPIA MIN. PER APERTURA POSITIVA: Min. torque positive opening operation

LEGENDA

Legenda

- PREMENDO

Pushing

- RILASCIANDO

Releasing

UNITA' DI CONTATTO 2NOContact blocks	NCATALOG Cotalogue	DIAGRAMMI CORSE Travel diagrams
	PS 233N	
	PS 533N	
C6 $5_{1}-4$ 1NO +1 NC 1422 8	PS 633N	
13 C7 13 $1 \mathrm{NO}+1 \mathrm{NC}$ 1 14 14	PS 733N	
C9 $4-4$ 2NC 1222	PS 933N	
	PS I033N	
Cl 4 $4-4$ 2NC 12	PS 1433N	
	PS I533N	
$\begin{array}{lll} \mathrm{C} 20 & 4-4--^{\prime} \\ \text { 1NO }+2 \mathrm{NC} & 12 & 22 \\ \hline \end{array}$	PS 2033N	
$\begin{aligned} & \mathrm{C} 2 \\ & 1 \mathrm{NO} .1 \mathrm{NC}+ \\ & \text { iNo. } 1 \mathrm{NC} \\ & 1422 \end{aligned}$	PS 234N	$\begin{aligned} & 13-140 \\ & 20 \\ & 21.22 \\ & 43 \\ & 31-34 \\ & 31-32 \\ & \hline \end{aligned}$
	PS 534N	
	PS 634N	
	PS 734N	
C9 $4-4$ 2NC 1222	PS 934N	$\mathrm{Cl}_{-12}^{0}{ }^{\circ}$
	PS I034N	${ }_{23}^{13-14}-{ }^{\text {a }}$
 Cl 4 $4-4$ 2NC 12 122 	PS 1434N	${ }^{11-12}{ }_{21}^{0}=\frac{0}{32}$
$\begin{array}{ll} \mathrm{Cl5} & ⺊^{\prime}--_{1}^{\prime} \\ \text { 2NO } & 1424 \\ \hline \end{array}$	PS I534N	${ }_{23}^{13-14-24}=\underbrace{14}_{14}$
	PS 2034N	
	PS 235N	
	PS 535N	
$\begin{array}{\|lll\|} \hline \text { C6 } & 13 & 13 \\ 1 \mathrm{NO}+1 \mathrm{NC} & 1 & 14 \\ \hline \end{array}$	PS 635N	
	PS 735N	
C9 $4-4$ 2NC $H_{12}-2_{2}$	PS 935N	$\begin{array}{llll} 111-12 \\ 21-22 & 0 & 32 & 52 \\ \hline \end{array}$
$\begin{array}{ll} \mathrm{ClO} & 1^{1}--_{1}^{\prime} \\ \text { 2NO } & 14 \\ \hline \end{array}$	PS I035N	
Cl 4 $7-4$ 2NC 72 12	PS	
	PS I535N	
$\begin{array}{lll}\mathrm{C} 20 & 4-4-1^{\prime} \\ 1 \mathrm{NO}+2 \mathrm{NC} & 12 & 2234\end{array}$	PS	
	PS 236N	
	PS 536N	
	PS 636N	
C7 $-\quad 4$ 1NO +1 NC 14 1422	PS 736N	${ }_{13}^{21-22}=\frac{0}{52}$
C9 $4-4$ 2NC 1222	PS 936N	
	PS I036N	${ }_{23}^{13-14}{ }^{0}{ }^{14}$
 Cl 4 11 2 NC $4-4$	PS 1436N	
	PS I536N	
	PS 2036N	

* IN ALTERNATIVA

Alternative: M20×1.5 ISO 262
A LEVA CON ASTA RIGIDA IN NYLON with rigid rod lever nylon
VELOCITA' MASSIMA:
Max speed
Min. torque actuation: 0.10 Nm COPPIA MIN. PER APERTURA POSITIVA Min. torque positive opening operation

LEGENDA

Legenda

- PREMENDO

Pushing
4 RILASCIANDO Releasing

A LEVA LUNGA CON ROTELLA
With lenghtened roller lever
VELOCITA' MASSIMA:
CON CAMMA A 30°. $\quad 1.5 \mathrm{~m} / \mathrm{s}$
Mox speed mith COPPIA MIN. DI AZIONAMENTO: Min. torque actuation:

A LEVA CON ASTA IN PVC E MOLLA INOX
With PVC rod lever and spring stainless steel
VELOCITA' MASSIMA:
COPPIA MIN. DI AZIONAMENTO: 0.10 Nm COPPIA UIN PER APERTURA POSTIVA: Min. torque positive opening operation

LEGENDA
Legenda

- PREMENDO

Pushing
4 RILASCIANDO
Releasing Min. torque positive opening operation: 0.25 Nm LEGENDA
Legenda
\rightarrow APERTURA POSITIVA
Positive opening

- INIZIO APERTURA POSITIVA

Positive opening beginning

- PREMENDO

Pushing

- RILASCIANDO

Releasing

* $\varnothing 1 / 2^{\prime \prime}$ NPT ANSI B1.20

A LEVA CON ROTELLA
with roller lever
VELOCITA' MASSIMA:
CON CAMMA A 30°. $1.5 \mathrm{~m} / \mathrm{s}$
Ma speed Aith zo:com: $1.5 \mathrm{~m} / \mathrm{s}$
COPPIA MIN. DI AZIONAMENTO: 0.06 Nm COPPIA MIN. PER APERTURA POSITNA Min. torque positive opening operation: 0.25 Nm LEGENDA
Legenda
\rightarrow APERTURA POSITIVA
Positive opening

- INIZIO APERTURA POSITIVA Positive opening beginning
- PREMENDO

Pushing
4 RILASCIANDO
Releasing

Contact blocks	DIAGRAMMI CORSE Travel diagrams		
$\begin{array}{\|lll} \hline \text { C6 } & 13 & 21 \\ 1 \mathrm{NO}+1 \mathrm{NC} & 14 & 14 \\ \hline \end{array}$			
	PS $75 \mathrm{IN} \Theta_{13-14-22}^{21-23}$		
ClO 1^{13} 2NO $⺊^{23}-l_{1}^{2}$ 14 14 1			
Cl 4 11 2 NO $4-4$ 12 21 12 22			
	$\text { PS } 155 \mathrm{IN}{ }_{23-24}^{13-1}-\underbrace{0}_{22}$		
$\begin{array}{lll} \hline \mathrm{C} 20 & { }^{11} \\ 4 & 21 & 43 \\ 1 \mathrm{NO}+2 \mathrm{NC} & 12 & 12 \\ 122 \end{array}$	$\text { PS } 205 \mathrm{IN} \oplus_{21}^{13-14} \underset{32}{1-34}=\frac{23}{29}$		
$\begin{array}{\|lll} \hline \text { C6 } & 13 & 21 \\ 1 \mathrm{NO}+1 \mathrm{NC} & 1 & 14 \\ 14 & 22 \\ \hline \end{array}$			
C7 13 21 $1 \mathrm{NO}+1 \mathrm{NC}$ $⺊^{2}$ -1 14 22	PS $752 \mathrm{~N} \oplus{ }_{13-14}^{21-22} 0$		
C9 11 2NC $4-4$	$\text { PS 952N } \oplus_{21-22}^{11-12}=0$		
Cl 4 $4-4$ 2 NC 12			
Cl 5 1^{13} 2NO $t^{23}-1^{2}$ 14 24	$\text { PS } 1552 \mathrm{~N}{ }_{23-24}^{13-14}=\underbrace{0}_{22}$		

A LEVA CON ROTELLA
With roller lever
VELOCITA' MASSIMA:
CON CAMMA A 30°
Max speed with 30° cam. $1.5 \mathrm{~m} / \mathrm{s}$
COPPIA MIN. DI AZIONAMENTO: Min. torque actuation:
COPPIA MIN. PER APERTURA POSITVA:
Min. torque positive opening operation: 0.25 Nm
LEGENDA
Legenda

- APERTURA POSITIVA

Positive opening

- INIZIO APERTURA POSITIVA Positive opening beginning
- PREMENDO

Pushing
4 RILASCIANDO
Releasing

A LEVA CON RULLO IN PORCELLANA
With porcelain roller lever
VELOCITA' MASSIMA: $\quad 0.5 \mathrm{~m} / \mathrm{s}$ Max speed
COPPIA MIN. DI AZIONAMENTO: 0.03 Nm Min. torque actuation: COPPIA MIN. PER APERTURA POSITNA: 0.25 Nm Min. torque positive opening operation:

LEGENDA

Legenda
\Leftrightarrow APERTURA POSITIVA
\rightarrow Positive opening

- INIZIO APERTURA POSITIVA
- Positive opening beginning
- PREMENDO

4 RILASCIANDO
Releasing

A Leva allungabile con rotella

A LEVA ALLUNGABILE CON ROTELLA IN GOMMA With rubber roller extensible lever
VELOCITA' MASSIMA:
CON CAMMA A 30. Max speed with 30° cam: COPPIA MIN. DI AZIONAMENTO: 0.06 Nm Min. torque actuation: COPPIA MIN. PER APERTURA POSTIVA: Min. torque positive opening operation: 0.25 Nm

EEGENDA

\rightarrow APERTURA POSITIVA
APERTURA POSITIVA
Positive opening

- INIZIO APERTURA POSITIVA

Positive opening beginning

- PREMENDO
- RILASCIANDO

Releasing

A LEVA ALLUNGABILE CON ROTELLA IN GOMMA With rubber roller extensible lever
VELOCITA' MASSIMA:
CON CAMMA A 30°
Max speed with 30° cam:
COPPIA MIN DI AZIONAMENTO: 0.06 Nm Min torque actuation.: 0.06 Nm COPPIA MIN. PER APERTURA POSTIVA: Min. torque positive opening operation:

EGENDA

Legendo
APERTURA POSITIVA
Positive opening

- INIZIO APERTURA POSITIVA Positive opening beginning
PREMENDO
- Pushing
- RILASCIANDO

Releasing

	Gas	$\begin{aligned} & \mathbf{0} \\ & \mathbf{N} \\ & \hline \end{aligned}$	1-2	II2G	Ex db IIC T6:T5 Gb
	Dusts		21-22	II2D	Ex tb IIIC $785^{\circ} \mathrm{C} \div 1100^{\circ} \mathrm{C} \mathrm{Db}$

Amb. Temp.	Standard Exłended	x^{2}	$-20^{\circ} \mathrm{C}$ $-50^{\circ} \mathrm{C}$	

- Ideal to control Gates, Protections, Carters and any moving mechanical parts.
- Stainless Steel operating key has to be fixed to the mobile part of the protection. The key is removed from the switch when opening the protection and a mechanism ensures the positive opening of the electric contact.
- Applicable to any type of protection (hinged, removable or sliding)
- Possibility to operate the switch with a key allowing the restart only by inserting the same key
- The switch with manual mechanical delay are used on machines where dangerous conditions continue for a limited time even after pressing the stop command of the machine (mechanical inertia of pulleys, belt saw, grinders, etc.)
- Electrical power or timers not required
- For any other information pls. see pages D13 and D14.

[^1]Information on available contacts: see pages D13 and D14.

Installation

- The safety circuit shall be connected to the NC contact 21-22 when the key is inserted.
- The safety switches must be mounted to the body of the machine while the key-lock is fixed to the protection.
- Safety switches with manual mechanical delay firmly lock the key, once installed. Turn the knob to release/remove the key. Since the early rounds of rotation the electrical contact is positively open, only after about 20 seconds, the key is released: for closing the knob must be rotated in reverse.
- The head may be positioned on any of the four sides of the switch just by removing the four fixing screws: this allows up to 8 different actuation directions (the head has two key entries). Switches with manual mechanical delay allow up to 32 different possible configurations as the head has two key entries and a release knob independently swiveled $90^{\circ} \times 90^{\circ}$.
- When the key is not inserted make sure that any dust and dirt do not obstruct its seat (use the protection cap).

- Periodically verify the correct operation of the switch.

- Fix the switch interposing a washer under fixing screws head.

Application on fences

When the switch is used to protect parts of machines physically accessible to people, to prevent the door or gate may accidentally close when the operetor is inside, a padlock may be used at the appropriate hole on the key.
The arc of the padlock shall be of 6 mm diameter minimum.

NOTES

To read the installation and maintenance instructions is reccommended.

The temperature class $\mathrm{T} 6 / \mathrm{T} 85^{\circ} \mathrm{C}$ considers an Ambient Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas, class $T 5 / \mathrm{T} 100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.
[${ }^{\circ}$] The insulating voltage is equal to 400 VAC / 500 VDC for C2 and C11 contacts.
(*) For A.T. up to $+40^{\circ} \mathrm{C}$ the max surface temperature is $65^{\circ} \mathrm{C}$ reducing the number of operations to $600 / \mathrm{h}$.
${ }^{(* *)}$ As safety switches only those with Θ symbol shall be used.

The safety circuit must always be connected to NC contacts (11-12 or 21-22). Exceed by $1.5 \mathrm{~mm}\left(25^{\circ}\right)$ the gap between the contacts. Operate the switch with the indicated opening force.

A CHIAVE
With key

LEGENDA
Legenda
\rightarrow APERTURA POSITTVA Positive opening

A CHIAVE CON RITARDO MECCANICO MANUALE With key manual mechanical delay

LEGENDA
Legenda
APERTURA POSITIVA
Positive opening
$\stackrel{-}{+1}$

* $\varnothing 1 / 2^{\prime \prime}$ NPT ANSI 11.20

$\stackrel{\sim}{2}$

	PS 6R2N Θ
$\begin{array}{lll} & 11 & 21 \\ \text { C9 } & 4-4 \\ \text { 2NC } & 12 & 22\end{array}$	PS 9R2N Θ

ESEMPIO DI APPUCAZIONE

> ESEMPIO DI COLLEGAMENTO

*IN ALTERNATIVA:
Alternative: M20x1.5 ISO 262

Amb. Temp.	Standard		$-20^{\circ} \mathrm{C}$		
	Extended		$-50^{\circ} \mathrm{C}$		

$80^{\circ} \mathrm{C}$

- Ideal to control any moving mechanical parts especially conveyors. They make possible to stop the machine from any point of intervention by manually pulling the cable.
- Self-diagnostic for the correct operation of the unit by opening the contacts in case of cable loosening or breakage detection.
- The version with reset includes the indicator of correct tension of the cable as well as a mechanical indicator of the status of the contacts. Contacts remain open after the intervention even if the cable is released.
- Suitable for cables with free span up to 16 m and, with appropriate extensions, even beyond.
- For any other information pls. see pages D13 and D14.

Information on available contacts: see pages D13 and D14.

Installation

The switch is supplied with the following accessories:

- Plastic coated steel cable $\varnothing 5 \mathrm{~mm}$ lenght 6 m or 16 m ;
- 1 tie rod for tensioning the cable;
- 2 terminals;
- 2 jumpers.
- The safety circuit shall be connected to NC contact (11-12 or 21-22).
- For tensioning the cable allow a stroke of about 8 mm to the cursor of the switch.
- Use original acccessories only, otherwise the switch performances are not guaranteed.
- Periodically verify the correct operation of the switch.

NOTES

To read the installation and maintenance instructions reccommended.

The temperature class $\quad \mathrm{T} / \mathrm{T} 85^{\circ} \mathrm{C}$ considers an Ambient Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas, class $T 5 / \mathrm{T} 100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.
[${ }^{\circ}$] The insulating voltage is equal to 400 VAC / 500 VDC for C2 and C11 contacts.
(*) For A.T. up to $+40^{\circ} \mathrm{C}$ the max surface temperature is $65^{\circ} \mathrm{C}$ reducing the number of operations to $600 / \mathrm{h}$.
${ }^{(* *)}$ As safety switches only those with θ symbol shall be used.

The safety circuit must always be connected to NC contacts (11-12 or 21-22). Exceed by $1.5 \mathrm{~mm}\left(25^{\circ}\right)$ the gap between the contacts. Operate the switch with the indicated opening force.

CON TIRANTE PER FUNE
With connecting rod for rope

CON TIRANTE PER FUNE DESTRA
(684N-984N) E SINISTRA (683N-983N)
CON RESET
With connecting rod reset rope on the
right $(684 N-984 N)$ and left $(683 \mathrm{~N}-983 \mathrm{~N})$

CON TIRANTE PER FUNE VERTICALE E RESET With connecting rod reset rope on the vertical (Lungh. max 6012 m) (Lungh. max 6 o 12 m)
(max lenght 6 or 12 m)

ACCESSORI - A	essories
	tirante per mettere in tensione la fune IN MODO CORRETTO (Pz. 1). Stay bolt suitable for setting the rope in tension correctly (pcs. 1).
Art. M 870 ©	MORSETTO (Pz. $2 \circ 4$). Rope clamp (pcs. 2 or 4).
$\begin{gathered} \text { Art. C } 870 \\ \infty \end{gathered}$	CAVALLOTTO (Pz. 1). Thimble (pcs. 1).
Art. F 05	FUNE IN ACCIAIO PLASTIFICATA ROSSA $\varnothing 5 \mathrm{~mm}$ (in rotoli da 100 m). Red plasticized steal rope 05 mm (coils of 100 m).

은	Gas	\pm	1-2	II2G	Ex db IIC T6:75 Gb
\%	Dusts	N	21-22	II2D	Ex fb IIIC $785^{\circ} \mathrm{C} \div 1100^{\circ} \mathrm{C} \mathrm{Db}$

$+40^{\circ} \mathrm{C}$
$+80^{\circ} \mathrm{C}$

¢			Directive 2014/34/EU (ATEX)
$\stackrel{\text { ¢ }}{5}$			$\begin{gathered} \text { EN 60079-0 • EN 60079-1 } \\ \text { EN 60079-31 } \end{gathered}$
O		C	BVI 13 ATEX 0083
응	TG5		IEC 60079-0 • IEC 60079-1 IEC 60079-31
웅			IECEx EPS 13.0033

Buoyant in Moplen, Cable in Nylon (2 m) and mechanical actuator rotated by $90^{\circ} \times 90^{\circ}$.
counterweight in Zinc plated Steel

- Tags and screws in Stainless Steel.
- Information on available contacts: see pages D13 and D14.
- Double counterweight.
- Stainless Steel AISI 304 counterweight/s and buoyant.

CHARACTERISTICS of the CONTACT ELEMENTS

MODEL	CONTACT TYPE	CONTACT	CURRENT (A)	VOLTAGE (V)
PS 10AG	Single Pole	1 NO +1 NC	$I_{\text {max }}=10 \mathrm{~A}$	$\mathrm{~V}_{\text {max }}=220 \mathrm{~V} \mathrm{AC/DC}$
PS 20AG	Double Pole	$2 N O+2 N C$	$I_{\max }=10 \mathrm{~A}$	$\mathrm{~V}_{\text {max }}=220 \mathrm{~V}$ AC/DC

- The rod can be adjusted in length and tilt.
- The switch is normally supplied with actuator acting in both directions (actuator with float left or right) to set one sole direction loose the screws of the turret beneath which there is a knurled ring: by pressing and rotating it 90° to the right or left the desired direction of actuation is set. Restore the turret.
- Periodically verify the correct operation of the switch.
Noiles
To read the
installation and
maintenance
instructions is
reccommended.

The temperature class $\mathrm{T} 6 / \mathrm{T} 85^{\circ} \mathrm{C}$ considers an Ambient Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas class $\mathrm{T} 5 / \mathrm{T} 100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.
(*) For A.T. up to $+40^{\circ} \mathrm{C}$ the max surface temperature is $65^{\circ} \mathrm{C}$ reducing the number of operations to 600/h.

Use screw-terminals for wiring. Max section wires $2.5 \mathrm{~mm}^{2}$.

Example: PS 10AG N

$\begin{aligned} & \text { 든 } \\ & \text { 흔 } \\ & \text { 은 } \end{aligned}$	Gas	$\underset{\sim}{\mathbf{O}}$	1-2	II2G	Ex db IIB $+\mathrm{H}_{2} \mathrm{~T} 6 \mathrm{~Gb}$
	Dusts		21-22	II2D	Ex tb IIIC $785^{\circ} \mathrm{C}$ Db

| Amb. © | Standard
 Temp.
 Extended | $-25^{\circ} \mathrm{C}$ | Exm | +6 C |
| :--- | :--- | :--- | :--- | :--- | :--- |

京	Aluminum light alloy
$\left(\begin{array}{l} \text { 은 } \\ \text { "흠 } \end{array}\right.$	External epoxy RAL7000

400000000000		Directive 2014/34/EU (ATEX)
		EN 60079-0 • EN 60079-1 EN 60079-31
		ce INERIS 13 ATEX 0040X
	1665	IEC 60079-0 • IEC 60079-1 IEC 60079-31
		IECEx INE 13.0054X

- Stainless Steel shaft over a brass bush.
- Lever may bepositioned along 360°.
- The lever may be operated either clockwise or counterclockwise.

Cable entry with metric thread $M 20 \times 1,5$ (M).

Code	Lever Actuation	Contact Element		Weight (g)
FCL 110 RS	Counterclockwise rotation	Single Pole Switch	$10 \mathrm{~A}-250 \mathrm{VAC}$	640
FCL 110 RD	Clockwise rotation		$5 \mathrm{~A}-30 \mathrm{~V}$ DC	640
FCL 205 RS	Counterclockwise rotation	Double Pole Switch	$\begin{gathered} 5 \mathrm{~A}-250 \mathrm{~V} \mathrm{AC} \\ 0.4 \mathrm{~A}-125 \mathrm{~V} \mathrm{DC} \end{gathered}$	640
FCL 205 RD	Clockwise rotation		$5 \mathrm{~A}-30 \mathrm{~V}$ DC	640

Example: FCL 110 RD M

Order Coding

INSTALLATION OF SINGLE SWITCHES WITH SAFETY FUNCTIONS

- Use only switches with the symbol Θ.
- Connect the safety circuit to the NC normally closed contacts (11-12, 21-22 or 31-32).
- The NO normally open contacts (13-14,23-24,33-34) should be used only for signalling; these contacts are not to be connected with the safety circuit. However, if in the same protection two or more switches are used, it is possible to connect the contact NO to the safety circuit. In this case at least one of the two switches must have a positive opening and a normally closed contact NC (11-12, 21-22 or 31-32) must be connected to the safety circuit.
- Actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ.
- Operate the switch at least with the positive opening force indicated.
- The fixing of the device must occur in compliance with the standard EN ISO 14119.

Whenever the machine guard is opened and during the whole opening travel, the switch must be pressed directly (fig. 1) or through a rigid connection (fig. 2).
Only in this way the positive opening of the NC normally closed contacts (11-12,21-22,31-32) is guaranteed.

Fig. 1

Fig. 2

In safety applications with only one switch for each guard, the switches must never be activated by a release (fig. 3) or through a non rigid connection (i.e. by a spring).

Fig. 3

MECHANICAL STOP

Limit switches must not be used as mechanical stop.

The actuator must not exceed the max. travel as indicated in the travel diagrams.

The guard must not make a mechanical stop on the switch head.

The actuator must not strike directly against the switch head

ACTUATION MODES

General prescriptions

- The installation must be performed only by qualified staff aware of the regulations in force in the country of installation.
- The device must be used exactly as supplied, properly fixed to the machine and wired.
- It is not allowed to disassemble the product and use only parts of the same; it is prohibited to modify the device.
- Failure to comply with these requirements or incorrect use during operation can lead to the damage of the device and the loss of the function performed by the device itself. This entails the cessation of the warranty on the item and relieves the manufacturer of any liability.

Device utilization

- Before use, check if the national rules provide for further requirements in addition to those given here.
- Before installation, make sure the device is not damaged in any part.
- Do not use the device as mechanical stop of the actuator.
- Do not apply excessive force to the device once it has reached the end of its actuating travel.
- Do not exceed the maximum actuation travel.
- Do not stress the device with bending and torsion.
- Do not disassemble or try to repair the device, in case of defect or fault replace the whole device.
- In case the device is deformed or damaged replace it completely. There is no guarantee of working for a deformed or damage device.

Wiring and installation

- The installation has to be made by qualified staff.
- Limit the use of these devices to control functions.
- Keep the electrical load below the value specified by the respective utilization category.
- Turn off the power before access to the contacts, also during the wiring.
- Do not paint or varnish the devices.
- Do not bend or deform the device during installation.
- Do not use the device as a support for other parts of the machine (e.g. wireways, conduits, etc.).
- Comply with the minimum and maximum sections of electrical conductors admitted by terminals (if present).
- Do not introduce polluting agents into the device as: talc, lubricants for cable sliding, powder separating agents for multipolar cables, small strands of copper and other pollutants that could affect the proper functioning of the device.
- Verify that the electrical cables, terminals, cable numbering systems and any other part do not obstruct the cover from closing correctly or if pressed between them do not damage or compress the internal contact block.
- After the installation and before commissioning of the machine, verify: the correct operation of the device and all its parts, the correct wiring and tightening of all screws and that the actuating travel of the actuator is shorter than the maximum travel allowed by the device.
- After installation, periodically check for correct device operation.

- Ideal for any contactless control.
- Peculiar for applications in critical environments dominated by the presence of oils, greases, liquids, dusts, etc.
- Indispensable to detect and/or count any items passing by at remarkable speed.
- Not subject to any mechanical wear and thus, compared to traditional switches, a longer operating life is guaranted.
- The switch actuated by a permanent magnet series MG (see page D30).
- Fixing bracket in Stainless Steel AISI 316L.
- Cable gland with female bushing 1/2" NPT ANSI B1. 20 and 1 m cable included.
- Available version provided with junction box (SX 14 see page B3) and sealing nipple.
$⿳$ - Bistable contact (Available only with 1 NO contact).
은 - Cable gland with female bushing M20x1,5.
Stainless steel AISI 316L cable gland.

Cable with length other than standard.
Junction box and sealing nipple in Stainless Steel.

IM..

NOTES

To read the installation and maintenance instructions is reccommended.

The temperature class
IM..S..
 $\mathrm{T} 6 / 785^{\circ} \mathrm{C}$ considers an Ambien \dagger Temperature (A.T.) extended up to $+60^{\circ} \mathrm{C}$, whereas class T5/T $100^{\circ} \mathrm{C}$ considers an A.T. extended up to $+80^{\circ} \mathrm{C}$.

Contact	Scheme	Box	Weight (g)
1 switchin	Stainless steel	370	
1 Normally open	Stainless steel	370	

Example: IM/U

Contact elements Technical Data:

- Contact type
- Contatti materia
- Max switching power
- Max switching voltage
- Max current peak
- Contact resistance
- Contact vibration time
- Switching frequency

Switching (NO)
Rhodium
40 VA
250 VDC - 220 VAC
1 A
0.075Ω
0.3 ms

100 Hz

- Switching hysteresis
- Set point accuracy
- Axial vibration resistance
- Contact mechanical life
- Storage temperature
- Connecting cable
$\sim 5 \mathrm{~mm}$
0.01 mm

100 gr
10^{8} operations
$-10^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$
$2 \times 0.75 \mathrm{~mm}^{2} \div$
$3 \times 0.75 \mathrm{~mm}^{2}$

Instructions

- The enclosure must neither be distorted nor subjected to shocks since the contact element may be damaged.
- Magnetic proximity switches are sensitive to high current loads.
- As the elasticity of the contact shells is minimum, a small welding effect can cause the bonding of the contact blades.
- The opening of the contacts is very fast so that, by switching off inductive loads such as coils of relays, solenoid valves, electromagnets, etc.. high voltages are determined by self-induction. To prevent the sticking of contacts the allowed max. electrical values (power, voltage and current peak) must never be exceeded.
Pay attention to the insertion current peak. The charging currents of the capacitors must be limited by appropriate pre-resistors (i.e. incandescent lamps insertion demands 3-4 times the nominal current value; consequently contacts rated for 100 W can pilot incandescent lamps lower than 25 W).
- The control of inductive loads (relays, solenoid valves, etc.) makes essential the spark suppression by inserting in parallel:
- in d.c. a diode
- in a.c.. an RC circuit (resistence + capacitor)
- For the switching contacts the color code is as follows:
- brown-black: contact NO;
- brown-blue: contact NC.

PERMANENT MAGNETS

- Used to operate the magnetic proximity switches series IM...
- Available in three different sizes.

PERMANENT MAGNETS						
Code	A	B	MA	Actuation Distance	Weight (g)	
MG1	20	6	M3x16	$3 \div 7$	10	
MG2	20	10	$M 4 \times 20$	$5 \div 12$	15	
MG3	31	15	$M 5 \times 20$	$12 \div 25$	50	

Instructions

- Permanent magnets must be mounted by countersunk screws in non-magnetic materials such as brass, aluminum, stainless steel or plastic.
- Larger switch control distance is reached when the permanent magnet is fixed directly on an iron support.
- Embedding the permanent magnet in a mass of iron causes a short circuit of the magnetic field; it is necessary provide for a distance of 1-3 millimeters from the iron surface.
This type of mounting significantly reduces the operating distance of magnetic switch.
- The permanent magnets featuring north polarity are painted red.

[^0]: 는
 Contact Units for currents and/or voltages beyond the standard. - Cable entry with metric thread M20x1.5 (M).

[^1]: | ․ |
 | :--- | :--- |
 | 은 |
 | ㅇ |

 Stainless Steel version (see page 119).
 Cable entry with metric thread M20x1.5 (M).

 - Orthogonal key.
 - Jointed Key.

